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The cores of edge dislocations, edge dislocation dipoles, and edge dislocation loops in planar graphene have
been studied by means of periodized discrete elasticity models. To build these models, we have found a way to
discretize linear elasticity on a planar hexagonal lattice using combinations of difference operators that do not
symmetrically involve all the neighbors of an atom. At zero temperature, dynamically stable cores of edge
dislocations may be heptagon-pentagon pairs �glide dislocations� or octagons �shuffle dislocations� depending
on the choice of initial configuration. Possible cores of edge dislocation dipoles are vacancies, pentagon-
octagon-pentagon divacancies, Stone-Wales defects, and 7–5-5–7 defects. While symmetric vacancies, diva-
cancies, and 7–5-5–7 defects are dynamically stable, asymmetric vacancies and 5–7-7–5 Stone-Wales defects
seem to be unstable.
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I. INTRODUCTION

Graphene1,2 and other two-dimensional �2D� crystals3

have been experimentally observed quite recently. This dis-
covery has led to physics where quantum relativistic phe-
nomena can be mimicked and tested experimentally in
condensed-matter physics.4 Among striking electronic prop-
erties of graphene due to its quantum electrodynamicslike
spectrum are two chiral quantum Hall effects, minimum
quantum conductivity in the limit of vanishing concentration
of charge carriers and strong suppression of quantum inter-
ference effects. Ballistic transport on submicron distances at
room temperature makes graphene a promising material for
nanoelectronics.4

Defects in graphene strongly affect its electronic and
magnetic properties,5–7 which may be described by the Dirac
equation on curved space.8 Irradiation experiments show that
pentagon-heptagon pairs �5–7 defects�, vacancies, divacan-
cies �5–8–5 defects comprising an octagon and two adjacent
pentagons�, and adatoms are commonly obtained, but seem-
ingly not Stone-Wales �SW� defects �two adjacent 5–7 de-
fects with opposite Burgers vectors and whose heptagons
share one side—briefly 5–7-7–5 defects�.9 The far field of
5–7 defects corresponds to that of edge dislocations in elas-
ticity, while the far field of SW defects, vacancies and diva-
cancies is that of an edge dislocation dipole. Quite recently,
experimental observations of edge dislocations on high-
quality graphene grown on Ir�111� have been reported.10

Studies of defects and their motion are important in assessing
the mechanical response of graphene at the atomic scale and,
as indicated above, its electronic properties.

One common way to describe defects in graphene is to
use ab initio calculations. Density-functional theory �DFT�
has been used to ascertain the magnetic properties of
graphene sheets and single-wall nanotubes with vacancies.5

Local spin DFT has been used to describe glide and shuffle
dislocations in irradiated graphitic structures.11 Molecular
dynamics �MD� has been used to discuss the stability of

nanotubes under tension12 and also in the presence of differ-
ent 5–7 pairs such as 5–7-7–5 and 7–5-5–7 �similar to SW
but now the pentagons share one side� defects.13 Atomistic
Monte Carlo simulations are less costly than MD and have
been used in studies of the stability of single graphene
sheets.14 Classical structural models of graphene may ac-
count for chirality effects in nanotubes and allow us to assess
the impact of the lattice structure on some elastic
properties.15 However, these classical models lack the ability
to generate and move defects. The approach presented in this
paper is different.

Relevant defects in graphene are the cores of different
edge dislocation and edge dislocation dipoles. Thus, we will
regularize appropriately the linear elasticity on the graphene
honeycomb lattice and describe which are the stable cores of
different edge dislocations and dipoles.16 It is well known
that cores of dislocations in crystals with covalent bonds are
very narrow, so that the elastic field decays quite fast to that
given by linear elasticity as the distance to the dislocation
point �in 2D the dislocation line is a point� increases.17,18

This means that we can regularize linear elasticity on a rela-
tively small hexagonal lattice and impose boundary condi-
tions corresponding to the elastic field of an edge dislocation
�or a dislocation dipole� on a boundary, which is sufficiently
far from the dislocation point for the differences of the dis-
placement vector to be well approximated by their corre-
sponding differentials. The result will seamlessly match a
calculation on a much larger lattice provided that the far field
of a dislocation is the same as that given by linear elasticity
as we depart from the dislocation point. Despite the slow
decay of the elastic strain away from the dislocation point,
differences and differentials of the elastic displacement be-
come indistinguishable at a few atoms away from the dislo-
cation point.

Recently, we have developed periodized discrete elasticity
models of dislocations in cubic crystals that describe their
motion and interaction.19–21 These models appear to provide
the simplest correction to the equations of elasticity allowing
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nucleation and motion of defects and they have two main
ingredients. First, by discretizing elasticity, a linear lattice
model involving nearest and next-nearest neighbors is found.
In the continuum limit, this lattice model provides the equa-
tions of elasticity with the appropriate crystal symmetry. Sec-
ond, we need to account for the fact that certain atoms at the
core of a dislocation change their next neighbors as the dis-
location moves. Thus, to describe dislocation motion we
need an algorithm to update neighbors. Alternatively, we can
periodize discrete differences along the primitive directions
of the crystal by using an appropriate periodic function,
thereby restoring crystal periodicity. This periodic function is
selected in such a way that elasticity equations are recovered
far from defect cores and stable static defects can be gener-
ated using their known elastic far fields at zero applied stress.
For applied stresses surpassing the Peierls stress of the ma-
terial, the defects should move and the value of the Peierls
stress can be used to calibrate the periodic function.22

Here we extend this idea to the study of defects and their
impact on the mechanical response of graphene sheets at
zero temperature. Mostly planar graphene is very different
from cylindrical carbon nanotubes having very small radii
and large curvature and from three-dimensional �3D� graph-
ite whose descriptions necessarily require studies different
from the present one. Two facts complicate the task of de-
signing lattice models of graphene. One is that graphene has
a two-atom basis. The other is that a planar hexagonal lattice
is intrinsically anisotropic even if its continuum limit is iso-
tropic elasticity. We have dealt with these issues by using
difference operators whose continuum limits are linearly in-
dependent combinations of the partial derivatives entering
the Navier equations of linear elasticity. The key idea to
choose our difference operators is that they do not have to
involve all neighbors of an atom on an equal footing. Once
we have an appropriate discretization of linear elasticity, we
periodize the resulting lattice model in a way that allows
dislocation gliding. Adding thermal effects and local curva-
ture effects due to ripples2,14 increases the complexity of
models and we have omitted these effects in the present pa-
per, which is organized as follows. Section II recalls some
basic details on the structure of graphene lattices and pre-
sents the stable defects we have obtained by solving the pe-
riodized discrete elasticity models. The basis of these models
is lattice models obtained by discretizing elasticity as indi-
cated in Sec. III. Periodized discrete elasticity is discussed in
Sec. IV. Section V describes numerical tests of defects in
graphene carried out with the full 2D model and with a scalar
reduced version thereof. Among solutions of our models, we
have found a stable octagon defect. Known defects, such as
pentagon-heptagon pairs and 5–7-7–5 SW defects, move and
interact as expected. In particular, the two 5–7 defects com-
prising the two edge dislocations with opposite Burgers vec-
tors of a SW glide to each other on their common gliding line
and annihilate. This is not the case if we have a 7–5-5–7
defect �similar to the SW, but now the pentagons share a
common side�,13 which is stable because the dislocation cen-
ters of the component edge dislocations are displaced one
atomic distance from each other in different glide lines.23 As
observed in experiments, we have also obtained stable 5–8–5
divacancies9 and symmetric vacancies.24 We find that a

symmetry-breaking vacancy25 evolves toward a simple three-
fold symmetric vacancy.24 Lastly, Sec. VI contains our con-
clusions.

II. STRUCTURAL CHARACTERISTICS OF GRAPHENE
AND DEFECTS

Figure 1 illustrates the structure of a graphene sheet com-
prising a single layer of graphite. This 2D hexagonal lattice
is equivalent to a cubic lattice with a two-atom basis gener-
ated by two nonorthogonal unit-cell vectors a= �1,0�a and
b= �1,�3�a /2, where a is the lattice constant. The length of a
hexagon side is l=a /�3. Dark and light colors are used to
distinguish the two sublattices; dark atoms belong to sublat-
tice 1 and light ones to sublattice 2.

Graphene layers often contain defects. An experimental
study of defects generated by irradiation and images thereof
is reported in Ref. 9. Several defects have been obtained by
using the periodized discrete vectorial model presented in
Sec. III. They appear in Figs. 2–5. In these figures and suc-
cessive ones in the paper, only the positions of the atoms
have been calculated numerically. The bonds between neigh-
boring atoms are only aids to visualize the structure of the
lattice.

A simple defect in a graphene sheet is the single
pentagon-heptagon �5–7� pair depicted in Figs. 2�a� and 2�b�.
As we will show later, this defect represents an edge dislo-
cation and its gliding motion can be characterized by atom
motion together with breakup and attachment of bonds be-
tween atoms. Note that link breakup and union occur only
between atoms in the direction of defect motion. As a result
of this motion, the neighbors of the moving atoms in the
rows immediately above and below them change. If we re-
call that bonds between neighboring atoms are only visual-
ization aids, saying that “one defect moves by breaking
bonds between some atoms and creating bonds with others”

FIG. 1. �Color online� Graphene hexagonal lattice. The unit-cell
vectors are a=a�1,0� and b=a(cos� �

3 � , sin� �

3 �) , with a lattice con-
stant a=2.461 Å. The unit cell contains two carbon atoms A
= �0,0� and B=−l(cos� �

6 � , sin� �

6 �) belonging to two sublattices. An
atom A has three nearest neighbors, six next-nearest neighbors, and
three second-nearest neighbors.
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is only a figure of speech, not a consequence of the model.
Our models show that edge dislocations can have cores

different from those depicted in Fig. 2. In Fig. 3, eight atoms
�one with a dangling bond� form the core of an edge dislo-
cation. When the dark atom moves to the left �as indicated by
the arrow� and is attached to the light atom with the dangling
bond, the light atom formerly connected to it moves to the
right and one of its bonds is left dangling. The overall result
is the one-step motion of the octagon defect to the right.

Figure 4 depicts a vacancy defect, which is a possible
core of an edge dislocation dipole as will be shown later.
Figure 4�a� is the initial configuration obtained by discreti-
zation of the elastic field of an edge dislocation dipole. Fig-
ure 4�b� is the final configuration obtained by evolution of
Fig. 4�a�.

Figure 5�a� depicts another possible core of an edge dis-
location dipole—a divacancy formed by an octagon with two
adjacent pentagons. This 5–8–5 defect is dynamically stable.
Yet another different core of the dipole is the SW defect
formed by a pair of heptagon pentagons as depicted in Fig.
5�b�. This 5–7-7–5 defect is created by the SW bond rotation
of one light atom forming the lowest vertex of a hexagon and
bond reattachment to another light atom to form the top of a
pentagon and, at the same time, the basis of a heptagon. This
bond rotation leaves an oppositely oriented 5–7 defect next

to the other one. This SW defect has been obtained by su-
perposition of the initial guesses for the elastic displacement
fields of two opposite edge dislocations with heptagon-
pentagon cores that share the same glide line. In elasticity,
we would expect that the two component edge dislocations
of this dipole glide toward each other and annihilate, leaving
the undisturbed lattice as a result. This is in fact what the
numerical solution of our model shows. Thus, the SW defect
represents an edge dislocation dipole and it seems to be dy-
namically unstable.16 If a sufficiently large shear stress is
applied to a lattice that contains one SW defect, its two com-
ponent dislocations drift apart as shown in Fig. 6.

If we form a different dipole with component dislocations
having opposite Burgers vectors and different glide lines,
then the two component edge dislocations glide toward each
other but do not meet. Instead they form a stable dislocation
dipole. As in the case of nanotubes,13 the simplest realization
of this idea is a 7–5-5–7 defect in which the two pentagons
�not the two heptagons as in the SW configuration� share a
common side. Our results show that the 7–5-5–7 defect is
dynamically stable.23

III. DISCRETE ELASTICITY MODELS FOR GRAPHENE
SHEETS

We want to produce a lattice model that reduces to the
equations of linear isotropic elasticity in the far field of a
defect. In the continuum limit, elastic deformations of
graphene sheets are described by the Navier equations for the
2D displacement vector �u ,v�,

(a)

(b)

FIG. 2. �Color online� Numerically generated single pentagon-
heptagon defect and its motion. The pentagon marks the lower end
of an extra column of hexagons and its basis forms the top of the
heptagon. �a� Under sufficiently large applied shear stress, a dark
atom moves to the right and a light one to the left as indicated by
the arrows. �b� The result is that the pentagon-heptagon defect
moves one step to the right.

(a)

FIG. 3. �Color online� Numerically generated shuffle dislocation
with dangling bond. An octagon marks the position of the core. �a�
Under sufficiently large applied shear stress, a light atom moves to
the right and a dark one to the left as indicated by the arrows. �b�
The result is that the edge dislocation moves one step to the right.
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�
�2u

�t2 = C11
�2u

�x2 + C66
�2u

�y2 + �C66 + C12�
�2v

�x � y
, �1�

�
�2v
�t2 = C66

�2v
�x2 + C11

�2v
�y2 + �C66 + C12�

�2u

�x � y
, �2�

where � is the mass density. In the basal plane, graphite is
isotropic so that C66=�, C12=�, and C11=�+2�, in which �
and � are the Lamé coefficients.

A. Discretization of the Navier equations and linear lattice
model

We would like to find a linear lattice model by discretiz-
ing the Navier equations �1� and �2�. This is not an obvious
task because any symmetric combination of differences in-
volving either all nearest neighbors or all nearest and next-
nearest neighbors, etc. only yields a multiple of the Laplac-
ian in the continuum limit no matter how many neighbors we
use. We have allowed combinations of differences that do not
involve all neighbors of the same type symmetrically. The
idea is to select three difference operators that yield three
independent linear combinations of �2u /�x2, �2u /�y2, and
�2u /�x�y in the continuum limit. Then we replace the partial
derivatives of u and v in Eqs. �1� and �2� by the combina-
tions of our differences that provide those partial derivatives
in the continuum limit.

Let us assign the coordinates �x ,y� to the atom A in sub-
lattice 1 �see Fig. 1�. The three nearest neighbors of A belong
to sublattice 2 and their Cartesian coordinates n1, n2, and n3
are defined below. Its six next-nearest neighbors belong to
sublattice 1 and their Cartesian coordinates are ni, �i
=4, . . . ,9� given by:

n1 = �x −
a

2
,y −

a

2�3
�, n2 = �x +

a

2
,y −

a

2�3
�,

n3 = �x,y +
a
�3

� ,

(a)

(b)

FIG. 4. �Color online� Numerically generated edge dislocation
dipoles. Arrangement of atoms in a vacancy: �a� initial configura-
tion as given by linear elasticity; and �b� final configuration after
time relaxation in the unstressed lattice.

(a)

(b)

FIG. 5. �Color online� Numerically generated edge dislocation
dipoles. �a� 5–8–5 divacancy. �b� 5–7-7–5 Stone-Wales defect.

FIG. 6. �Color online� The two component 5–7 edge disloca-
tions of a SW defect separate under a large applied shear stress.
This figure has been calculated using a simple periodized scalar
model in a lattice with 18�18 lattice spacings.
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n4 = �x −
a

2
,y −

a�3

2
�, n5 = �x +

a

2
,y −

a�3

2
�,

n6 = �x − a,y� ,

n7 = �x + a,y�, n8 = �x −
a

2
,y +

a�3

2
�,

n9 = �x +
a

2
,y +

a�3

2
� . �3�

Four of these atoms are separated from A by the primitive
vectors �a and �b �see Fig. 1�.

Let us define four operators acting on functions of the
coordinates �x ,y� of node A:

Tu = �u�n1� − u�A�� + �u�n2� − u�A�� + �u�n3� − u�A�� ,

�4�

Hu = �u�n6� − u�A�� + �u�n7� − u�A�� , �5�

D1u = �u�n4� − u�A�� + �u�n9� − u�A�� , �6�

D2u = �u�n5� − u�A�� + �u�n8� − u�A�� . �7�

Note that the operator T involves finite differences with the
three next neighbors of A, which belong to sublattice 2,
whereas H and D1 involve differences between atoms be-
longing to the same sublattice along the primitive directions
a and b, respectively �see Fig. 7�. D2 involves differences
between atoms belonging to the same sublattice along a dif-
ferent choice of the basis vectors: a and c �parallel to the line
joining atoms n5 and n8 in Fig. 7, which is also another
primitive direction�. The operator D2 will be important when
we want to consider a dislocation motion along slip direc-
tions a and c. Taylor expansions of these finite difference
combinations about �x ,y� yield

Tu � � �2u

�x2 +
�2u

�y2�a2

4
,

Hu �
�2u

�x2a2,

D1u � �1

4

�2u

�x2 +
�3

2

�2u

�x � y
+

3

4

�2u

�y2�a2,

D2u � �1

4

�2u

�x2 −
�3

2

�2u

�x � y
+

3

4

�2u

�y2�a2,

as a→0.

1. Model with three slip directions

Let us assume that we want to allow dislocations to slip
along any of the three primitive directions a, b, or c. Then
we replace in Eqs. �1� and �2� Hu /a2, �4T−H�u /a2, and
�D1−D2�u / ��3a2� instead of �2u /�x2, �2u /�y2, and
�2u /�x�y, respectively, with similar substitutions for the de-
rivatives of v. In terms of the Lamé coefficients, we obtain
the following equations at each point of the lattice:

�a2�2u

�t2 = 4�Tu + �� + ��Hu +
� + �

�3
�D1 − D2�v , �8�

�a2�2v
�t2 = 4�Tv + �� + ���4T − H�v +

� + �

�3
�D1 − D2�u .

�9�

2. Model with two slip directions

If we only allow slip along the two primitive directions a
and b that form our vector basis, we should replace in Eqs.
�1� and �2� Hu /a2, �4T−H�u /a2, and 2�D1−3T
+H /2�u / ��3a2� instead of �2u /�x2, �2u /�y2, and �2u /�x�y,
respectively, with similar substitutions for the derivatives of
v. In terms of the Lamé coefficients, the following equations
are then obtained:

�a2�2u

�t2 = 4�Tu + �� + ��Hu +
2�� + ��

�3
�D1 − 3T +

1

2
H�v ,

�10�

�a2�2v
�t2 = 4�Tv + �� + ���4T − H�v

+
2�� + ��

�3
�D1 − 3T +

1

2
H�u , �11�

at every point of the lattice. To have slip directions a and c,
we replace the operator −�D2−3T+H /2� instead of �D1
−3T+H /2� in Eqs. �10� and �11�. The same equations are
found if B= �x ,y� is an atom in sublattice 2. In this case, the
relevant neighbors of B entering the definitions of T, H, D1,
and D2 have coordinates

n1 = �x −
a

2
,y +

a

2�3
�, n2 = �x +

a

2
,y +

a

2�3
�,

n3 = �x,y −
a
�3

� ,

FIG. 7. �Color online� Neighbors of a given atom A. Only the
neighbors labeled 1, 2, 3, 4, 6, 7, and 9 are affected by the differ-
ence operators T, H, and D1 used in our discrete elasticity model
with two slip directions.
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n4 = �x −
a

2
,y −

a�3

2
�, n5 = �x +

a

2
,y −

a�3

2
�,

n6 = �x − a,y� ,

n7 = �x + a,y�, n8 = �x −
a

2
,y +

a�3

2
�,

n9 = �x +
a

2
,y +

a�3

2
� . �12�

We may see the hexagonal lattice as a set of atoms con-
nected by springs. These springs connect each atom A with
its nearest neighbors n1, n2, and n3 and with its nearest
neighbors along the primitive directions, n4, n6, n7, and n9. If
we add symmetrically the missing two next-nearest neigh-
bors n5 and n8 in the operator D1, its Taylor expansion pro-
duces the 2D Laplacian. Similarly, by adding all the second-
nearest neighbors, the Laplacian is found again. Symmetric
choices of neighbors only generate Laplacians but not the
terms involving cross derivatives. It seems reasonable to
break the central symmetry about a given atom when defin-
ing finite differences by giving preference to the primitive
directions. Notice that if we move along the lattice, then the
hexagonal arrangement itself is a source of anisotropy. Along
the x direction �a primitive direction of the lattice�, atoms are
arranged in a “zigzag” pattern. The same arrangement occurs
along the other primitive directions. However, along the y
direction atoms are arranged in an “armchair” pattern.

B. Lattice model in primitive coordinates

Equations �10� and �11� can be written in primitive coor-
dinates ui�, where i=1,2 �with u1�=u�, u2�=v��, by means of
the transformation ui=Tijuj� �summation over repeated in-
dexes is intended� with

�u

v
� = a	1

1

2

0
�3

2

�u�

v�
� . �13�

Writing Eqs. �8� and �9� or Eqs. �10� and �11� as
�a2�2ui /�t2=Lijuj, the linear equations of motion in the
primitive coordinates are �a2�2ui� /�t2=Lij�uj�, with Lij�
=Tik

−1LknTnj, or equivalently,

�a2�2u�

�t2 = 4�Tu� +
� + �

3
�3H − D1 + D2�u�

+ �� + ���H +
D1 − D2

3
− 2T�v�, �14�

�a2�2v�

�t2 =
� + �

3
�D1 − D2 − 3H�v� + 4�� + 2��Tv�

+
2

3
�� + ���D1 − D2�u�, �15�

when there are three slip directions or

�a2

2

�2u�

�t2 =
� + �

3
��H − D1�u� + �2H + D1�v��

+ T��� + 3��u� − 2�� + ��v�� , �16�

�a2

2

�2v�

�t2 =
� + �

3
��H + 2D1�u� + �D1 − H�v��

+ T��� + 3��v� − 2�� + ��u�� , �17�

when there are only two slip directions along the basis vec-
tors a and b. Note that u�= �u−v /�3� /a and v�=2v / �a�3�
are nondimensional. Equations �14� and �15� do not look
symmetric in the same way as Eqs. �16� and �17� do because
we have selected a basis along primitive directions a and b
so that c �which defines the third slip direction associated
with the operator D2� is not a basis vector.

C. Scalar model

When the displacements in the y direction are negligible,
we may ignore the vertical component and work in Cartesian
coordinates. The evolution equations for the displacements in
the horizontal direction are

�a2�2u

�t2 = 4�Tu + �� + ��Hu . �18�

This equation can also be obtained from u= �u�+v� /2�a by
adding twice Eq. �16� to Eq. �17� and then setting v�=0. The
only slip direction of the scalar model is along a.

IV. PERIODIZED DISCRETE ELASTICITY MODELS FOR
GRAPHENE SHEETS

The models described by Eqs. �8� and �9�, Eqs. �10� and
�11�, or Eq. �18� are linear and do not allow for the changes
of neighbors involved in defect motion. An obvious way to
achieve this is to update neighbors as a defect moves. Mod-
els such as Eqs. �8� and �9�, Eqs. �10� and �11�, or Eq. �18�
would have the same appearance but the neighbors ni would
be given by Eqs. �3� and �12� only at the start. At each time
step, we keep track of the position of the different atoms and
update the coordinates of the ni. This is commonly done in
MD as computations are actually carried out with only a
certain number of neighbors. Convenient as updating is, its
computational cost is high and analytical studies thereof are
not easy.

In simple geometries, we can avoid updating by introduc-
ing a periodic function of differences in the primitive direc-
tions that automatically describes link breakup and union
associated with defect motion. Besides greatly reducing the
computational cost, the resulting periodized discrete elastic-
ity models allow analytical studies of defect depinning,19,20,22

motion, and nucleation.21

To restore crystal periodicity, we replace the linear opera-
tors T, H, D1, and D2 in Eqs. �14� and �15� or Eqs. �16� and
�17� by their periodic versions,

Tpu� = g�u��n1� − u��A�� + g�u��n2� − u��A��

+ g�u��n3� − u��A�� , �19�

A. CARPIO AND L. L. BONILLA PHYSICAL REVIEW B 78, 085406 �2008�

085406-6



Hpu� = g�u��n6� − u��A�� + g�u��n7� − u��A�� , �20�

D1pu� = g�u��n4� − u��A�� + g�u��n9� − u��A�� , �21�

D2pu� = g�u��n5� − u��A�� + g�u��n8� − u��A�� , �22�

where g is a periodic function with period one and that
g�x��x as x→0. In our tests we have taken g to be a peri-
odic piecewise linear continuous function,

g��x� = �x , − � 	 x 	 � ,

−
2�

1 − 2�
x +

�

1 − 2�
, � 	 x 	 1 − � . � �23�

The parameter � controls defect stability and mobility un-
der applied stress. � should be sufficiently large for elemen-
tary defects �dislocations and vacancies� to be stable at zero
applied stress and sufficiently small for dislocations to move
under reasonable applied stress.19 The periodic function g
can be replaced by a different type of periodic function to
achieve a better fit to available experimental or numerical
data.

Periodized discrete elasticity is a Lagrangian model. The
atoms are labeled from the start and we track their motion.
The periodic functions allow us to simulate dislocation mo-
tion without updating neighbors thereby greatly reducing
computational cost.

In the simpler case of scalar elasticity �18�, the corre-
sponding periodized discrete elasticity model is

�a2�2u

�t2 = 4�Tpu + �� + ��Hu , �24�

Tpu = agu�n1� − u�A�
a

� + agu�n2� − u�A�
a

�
+ agu�n3� − u�A�

a
� . �25�

The nonlinear function g is only needed for differences be-
tween the neighbors that may change due to defect motion.
In the direction x, neighbors never change, therefore, we use
the operator H of Eq. �5�. Horizontal rows may shift, result-
ing in a shift of neighbors that is taken into account by using
Tp as in Eq. �25� with the periodic function g� defined in Eq.
�23�.

V. DEFECTS IN GRAPHENE

In this section, we discuss the defects obtained with our
periodized discrete elasticity models. In our numerical calcu-
lations, we use �for graphene� the elastic constants of graph-
ite in the basal plain �which is isotropic�, C11=C12+2C66
=1060 GPa, C12=�=180 GPa, and C66=�=440 GPa.26

This yields 
=0.17. We have used �=0.2 in the periodic
function g��x�. For this value, the Peierls stress for a 5–7
defect is 0.025 �, which is of the order of known values for
covalent crystals.18 Larger �smaller� values of � yield larger
�smaller� Peierls stresses; for � between 0.15 and 0.3, the

Peierls stress varies in the range between 10−3 � and
10−1 �. We have not calibrated our model to a precise value
but this can be done when Peierls stresses for single
graphene sheets are measured in experiments. All defects
have been calculated using the vectorial model �16� and �17�
periodized by means of Eqs. �19�–�21�. Analogous results
can be found using appropriate computationally cheaper sca-
lar models such as Eqs. �24� and �25�. Scalar models are
more convenient to analyze defect motion, interaction, and
even nucleation of defects constrained to move along a given
primitive direction. In more complex geometries, a combina-
tion of periodized discrete elasticity models and neighbor
updating could be useful.

In all cases, the construction of defects is similar. We use
the displacement field of a given defect in continuum linear
elasticity at zero applied stress, both as initial and boundary
condition for the discrete model. Then the model with over-
damped dynamics �replacing second-order time derivatives
in the model equations by first-order ones� is used to relax
the initial field to the stable stationary solutions representing
the sought defects. Applied stress can be implemented via
the boundary conditions. To study defect motion and inter-
action, we can use the models with inertia.

How large should our computational lattice be? We can
have an idea by using results by Zhang et al.27 For the far
field of defects, they considered linear elasticity with a strain
energy that was a quadratic functional of the strain tensor
and also of its first and second derivatives. They compared
results given by this theory with those of classical linear
elasticity and with results from atomistic simulations. In the
Fig. 11 of Ref. 27, it can be seen that four lattice spacings
away from the core of a Stone-Wales �SW� defect or of a
divacancy in graphene, linear elasticity already approximates
very well MD results �they use only 132 carbon atoms in
their simulations�. Thus, a lattice with 18�18 lattice spac-
ings �and therefore with 36�36=1296 atoms� should be suf-
ficiently large to obtain good results for a centrally located
defect by using our discrete elasticity models. The figures
presented in this paper have been obtained using such a lat-
tice and we have checked that our results do not change
significantly by decreasing slightly the lattice size or by in-
creasing it.

As we have said before, our model is more efficient than
MD. In MD, one has two options when computing the force
acting on each atom—either to include the interactions of
one atom with all its neighbors or to include only the neigh-
bors within a certain distance of the atom and update them as
time evolves. The cost of computing the force on each atom
at each time step according to the first option is huge due to
the large number of atoms involved and, therefore, we need a
very long time to compute just a few time steps. The second
option �few neighbors and updating� is less costly computa-
tionally than the first one but its cost is still large. In contrast
to this, our model involves a few nearest neighbors and the
periodic function used in the governing equations avoids the
need of updating neighbors at each step. Thus, computation
of the forces at each step is cheap. We may compute the
evolution of atoms in much larger lattices in a much shorter
time. Since our forces are cheaper to compute, we may use
higher-order solvers to integrate the resulting system of dif-
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ferential equations. Since we are able to handle larger lat-
tices, our trouble with numerical artifacts due to reflections
on the walls of the lattice is smaller. In MD, reflections of
waves at the boundaries of the computational domain limit
the time spans over which simulations are reliable and there
is a trade off between lattice size and the total time of a
simulation. In fact, it is not yet clear how to prevent spurious
reflections in MD simulations in an efficient manner.28 The
simplicity of our model equations allows us to introduce
simple nonreflecting boundary conditions, thereby suppress-
ing numerical size effects due to reflections at the bound-
aries.

A. Edge dislocations

Static edge dislocations can be generated using the over-
damped version of Eqs. �16� and �17� periodized by means of
Eqs. �19�–�21� and the elastic field of edge dislocations for
Eqs. �10� and �11�. To find the stationary edge dislocation at
zero stress, we first write the corresponding stationary edge
dislocation of isotropic continuum elasticity. The displace-
ment vector u= (u�x ,y� ,v�x ,y� ,0) of an edge dislocation di-
rected along the z axis �dislocation line� having Burgers vec-
tor �b ,0 ,0� is

u =
b

2�
tan−1� y

x
� +

xy

2�1 − 
��x2 + y2�� ,

v =
b

2�
−

1 − 2


4�1 − 
�
ln� x2 + y2

b2 � +
y2

2�1 − 
��x2 + y2�� ,

�26�

�cf. Ref. 29, p. 57�. Equation �26� has a singularity �r−1 at
the core and it satisfies �C�dx ·��u=−�b ,0 ,0� for any closed
curve C encircling the z axis. It is a solution of the planar
stationary Navier equations with a singular source term,

�u +
1

1 − 2

� �� · u� = − �0,b,0��r� . �27�

Here r=�x2+y2 and 
=� / �2��+��� is the Poisson ratio �cf.
page 114 of Ref. 30�.

The continuum displacement �26� yields the nondimen-
sional static displacement vector in primitive coordinates
U��l ,m�= �u�x ,y�−v�x ,y� /�3� /a and V��l ,m�
=2v�x ,y� / �a�3�, where x=a�x�+y� /2� and y=a�3y� /2. The
primitive coordinates x�=x0�+ l and y�=y0�+m are centered in
an appropriate point �x0� ,y0��, which is different from the ori-
gin to avoid the singularity in Eq. �26� to coincide with a
lattice point.

U��l ,m� will be used to find the stationary edge disloca-
tion of the discrete equations of motion. To this end, we
replace the inertial terms �a2�2u� /�t2 and �a2�2v� /�t2 in Eqs.
�16� and �17� by ��u� /�t and ��v� /�t, respectively. The
resulting overdamped equations have the same stationary so-
lutions. We use an initial condition u��l ,m ;0�=U��l ,m�
given by Eq. �26� and boundary conditions u��l ,m ; t�
=U��l ,m�+ �Fm ,0� at the lattice boundaries �F is a dimen-
sionless applied shear stress�. If �F��Fcs �Fcs is the static
Peierls stress for edge dislocations�, then the solution relaxes

to a static edge dislocation (u��l ,m� ,v��l ,m�) with the appro-
priate continuum far field.

Depending on the location of the singularity �x0� ,y0��, there
are two possible configurations corresponding to the same
edge dislocation in the continuum limit. Figure 2 shows the
structure adopted by the deformed lattice (l+u��l ,m� ,m
+v��l ,m�) when the singularity is placed between two atoms
that form any nonvertical side of a given hexagon. The core
of the dislocation is a 5–7 defect. If the singularity is placed
in any other location different from a lattice point, then the
core of the singularity forms an octagon having one atom
with a dangling bond as shown in Fig. 3. The dangling bond
causes this configuration to be more reactive due to the pos-
sibility of attaching impurity atoms to the dangling bond.
The octagon can also be seen as a 5–7 defect with an extra
atom inserted between heptagon and pentagon. The basin of
attraction of the octagon configuration seems to be larger
than that of the 5–7 defect. That the same dislocation type
may have two different cores is a familiar fact in crystals
with diamond structure and covalent bonds, such as silicon
�see page 376 in Ref. 17�. There it is shown that the 60° edge
dislocations may belong to the “glide set” or to the “shuffle
set.” Seen from a certain direction, the cores of the glide set
look like 5–7 defects, whereas the cores of the shuffle set
look like octagons with a dangling bond attached to one of
their atoms. Ewels et al.11 use the names “glide dislocations”
and “shuffle dislocations” for the 5–7 defects and the octa-
gons with a dangling bond �glide+adatom�, respectively.

The glide motion of edge dislocations occurs in the direc-
tion of their Burgers vector and on the glide plane defined by
the Burgers vector and the dislocation line. In the configura-
tions of Figs. 2 and 3, a supercritical applied shear stress will
move the dislocation in the x direction on the glide plane xz.
Our simulations show that the shuffle dislocations move
more easily than the glide dislocations as predicted by Ewels
et al.11 For conservative or damped dynamics, the applied
shear stress has to surpass the static Peierls stress to depin a
static dislocation and a moving dislocation propagates pro-
vided that the applied stress is larger than the dynamic
Peierls stress �smaller than the static one�.22 A moving dislo-
cation is a discrete traveling wave advancing along the x axis
and having far field (u��l−ct ,m�+Fm ,v��l−ct ,m�). The
analysis of depinning and motion of planar edge dislocations
follows that explained in Ref. 22 with technical complica-
tions due to our more complex discrete model.

Similar results are obtained with the simpler scalar model
�24� and �25�. In this case, the continuum displacement vec-
tor of an edge dislocation at zero applied stress is

U�x,y� =
b

2�
��x − x0,

�y − y0���

�� + 2�
� ,

where b�1,0� is the Burgers vector and ��x ,y�=arctan�y /x�.
Choosing the singularity point �x0 ,y0� as explained above,
we obtain configurations similar to those in Figs. 2 and 3
except that there is no displacement in the vertical direction.
To see the effect of a shear stress applied in the x direction,
we select as initial and boundary condition,
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U�x,y� =
b

2�
���x − x0�,

�y − y0���

�� + 2�
� + Fy .

B. Edge dislocation dipoles

An edge dislocation dipole is formed by two edge dislo-
cations with Burgers vectors in opposite directions. Depend-
ing on how we place the cores of these dislocations, different
dipole configurations result. Let E�x ,y� be the displacement
vector �26� corresponding to the edge dislocation we have
considered before. The static configuration corresponding to
a dipole is either a vacancy �Fig. 4�, a divacancy �Fig. 5�a��,
or a SW defect �Fig. 5�b��. To obtain these different dipole
cores, we use the following initial and boundary conditions
at zero stress: �i� Vacancy E�x−x0 ,y−y0− l /2�−E�x−x0 ,y
−y0�. l=a /�3 is the hexagon side in terms of the lattice
constant a. �ii� Divacancy E�x−x0 ,y−y0− l�−E�x−x0 ,y
−y0�. �iii� SW E�x−x0−a ,y−y0�−E�x−x0 ,y−y0�. We have
set x0=−0.25a and y0=−0.4l to draw Figs. 4 and 5.

The vacancy represented in Fig. 4�b� is similar to that
proposed in Ref. 24 using tight-binding calculations in
graphite surfaces. The initial configuration represented in
Fig. 4�a� �asymmetric vacancy� evolves toward the dynami-
cally stable symmetric vacancy represented in Fig. 4�b� for
overdamped dynamics. For conservative dynamics and zero
initial velocity, the initial asymmetric vacancy evolves to-
ward a stable oscillation about the symmetric vacancy. The
symmetric vacancy has the threefold symmetry observed in
experiments. In a recent paper, Telling et al.31 proposed that
asymmetric vacancies are stable single vacancy defects in
graphite sheets provided that atoms are allowed to be dis-
placed from the plane �see Fig. 1 in Ref. 25�. They further
propose that, at room temperature, the displaced atom rotates
around the vacancy center, which would also explain the
threefold symmetry observed in experiments �and possessed
by the symmetric vacancy�. For the initial conditions we
have considered �with either conservative or overdamped dy-
namics and at zero temperature�, we have not found stable
configurations resembling Fig. 4�a� or oscillations between
similarly asymmetric configurations with different orienta-
tions. Thus, the asymmetric vacancy seems to be unstable for
both overdamped and conservative dynamics in our model.16

If this is indeed the case, this configuration is a saddle point
with the conservative dynamics. Even if we allow bending
modes of the graphene sheet, the instability of this saddle is
likely to persist for small bending modulus. Future work will
be devoted to study this problem and whether our stability
results for different defects change if ripples in graphene are
allowed.

Both vacancies and divacancies are dynamically stable in
an unstressed lattice. A sufficiently large applied stress along
their glide direction �in both cases, the critical stress is about
0.12 � for �=0.2� splits these dipoles, thereby originating
two edge dislocations with opposite Burgers vectors that
move in opposite directions.

Another possible core of an edge dislocation dipole is a
5–7-7–5 SW defect as in Fig. 5�b�. When introduced as an
initial condition of Eqs. �16� and �17� periodized with Eqs.

�19�–�21�, the SW configuration is likely to be unstable un-
der zero applied stress. In fact, this configuration corresponds
to two identical edge dislocations that have opposite Burgers
vectors and share the same glide line. The dislocations com-
prising the dipole attract each other and are annihilated, leav-
ing an undistorted lattice as the final configuration. Thus, SW
defects seem to be dynamically unstable16 except if we add
external forces that produce the necessary bond rotation and
stabilize them. If a shear stress is applied in their glide di-
rection, these defects either continue destroying themselves
or �for large enough applied stress �0.15 � for �=0.2�� are
split in their two component heptagon-pentagon defects that
move in opposite directions as shown in Fig. 6. Note that
stability of SW defects may be very different in small-radius
nanotubes, which �unlike graphene� do not have edges on
their lateral surface and have a large curvature.

If we shift the 5–7 defects comprising a SW in such a way
that their glide lines are not the same, then we can obtain a
configuration which is stable at zero applied stress. The sim-
plest such case is a 7–5-5–7 defect in which the two penta-
gons share one side. We have checked that this defect is
dynamically stable23 and that it splits in its two component
edge dislocations when a shear stress exceeding 0.09 � is
applied to the lattice for �=0.2. Note that in all cases �va-
cancies, divacancies, 5–7-7–5, and 7–5-5–7 defects�, the
critical shear stress needed to split the dipole is larger than
the Peierls stress for an edge dislocation. The reason is that
splitting a dipole requires overcoming the resistance of the
lattice to motion �Peierls stress� and the attraction experi-
enced by two edge dislocations of opposite Burgers vectors.
The latter depends on the defect configuration, which thus
determines the critical dipole splitting shear stress.

Instead of a dislocation dipole, our initial configuration
may be a dislocation loop in which two edge dislocations
with opposite Burgers vectors are displaced vertically by one
hexagon side E�x−x0−a ,y−y0�−E�x−x0 ,y−y0− l� �l=a /�3
is the length of the hexagon side�. In principle, the disloca-
tion loop could evolve to an inverse SW defect �7–5-5–7�.
Instead, this initial configuration seems to evolve toward a
single octagon. If we displace the edge dislocations vertically
by l /2, E�x−x0−a ,y−y0�−E�x−x0 ,y−y0− l /2�, then the re-
sulting dislocation loop seems to evolve toward a single hep-
tagon defect.

C. Energetics

We can have an idea about the energy associated with
each defect by using the energy of the scalar model �18�
�measured with respect to the stress-free undistorted lattice�,

E = �
n
�2���u�n1� − u�n��2 + �u�n2� − u�n��2 + �u�n3�

− u�n��2� +
1

2
�� + ����u�n6� − u�n��2 + �u�n7� − u�n��2�� ,

�28�

where we sum over all points in the hexagonal lattice be-
longing to sublattices A or B in Fig. 7 with neighbors given
by Eq. �3� or Eq. �12�, respectively. It can be seen that Eq.
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�18� is equivalent to �a2�2u /�t2=−�E /�u. For a lattice with
16�16 lattice spacings, the energies associated with the de-
fects we have described are 0.658 eV for the apparently un-
stable 5–7-7–5 SW defect, 2.283 eV for the octagon with a
dangling bond �shuffle dislocation�, 4.917 eV for the 5–7
defect, and �in the case of the dislocation dipoles� 8.825 eV
for the vacancy, 12.074 eV for the 5–8–5 divacancy, and
9.483 eV for the stable 7–5-5–7 defect.13,23 These values are
similar to those found by Ewels et al.11 for the activation
barrier to form a glide dislocation dipole �8.99 eV� and a
shuffle dislocation �2.29 eV� in graphene �cf. Fig. 3 in Ref.
11�. Except for the SW defect, all other dislocation and dis-
location dipole cores are stable and are obtained by dynami-
cal evolution using the governing equations of the model
from the class of initial conditions we mentioned above.

VI. CONCLUSIONS

We have studied edge dislocations and dislocation dipoles
in planar graphene at zero temperature by means of peri-
odized discrete elasticity models, which seamlessly match
the elastic field of dislocations and dipoles as the distance
from their core increases. The cores of edge dislocations may
be the well-known pentagon-heptagon defects of Fig. 2
�glide dislocations� or octagons with a dangling bond
�shuffle dislocations11� as in Fig. 3, depending on how we
choose the initial configuration. Similarly, different cores are
possible for edge dislocation dipoles: vacancies, 5–8–5 diva-
cancies, SW defects, and 7–5-5–7 defects. Of these possible

cores, symmetric vacancies, divacancies, and 7–5-5–7 de-
fects are dynamically stable whereas asymmetric vacancies
and 5–7-7–5 SW defects are likely to be unstable. Our results
show that regularizing linear elasticity near dislocation cores
by periodized discrete elasticity is a good alternative to com-
putationally intensive atomistic simulations provided that de-
fects are sparse.

Note added in proof. We are indebted to Meyer and co-
workers for informing us about their experiments on an irra-
diated graphene membrane.32 According to their observa-
tions, SW defects created by irradiation of a graphene
membrane annihilate with 4 seconds thereby leaving a per-
fect lattice. More complicated configurations involving
pentagon-heptagon pairs also evolve towards the perfect lat-
tice in seconds. Thus, SW defects are unstable as predicted
by our overdamped models with damping �= �� and �=27
seconds. These time scales are several orders of magnitude
longer than typical ones in molecular dynamics simulations
�pico or nanoseconds�.
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